Skip to content

[Bug] Failed to load Llama #3381

@mariagcomesanaia-spa

Description

@mariagcomesanaia-spa

🐛 Bug

To Reproduce

Steps to reproduce the behavior:

1.Load LLama model
1.
1.

Expected behavior

response

MLCChat failed

Stack trace:
org.apache.tvm.Base$TVMError: InternalError: Check failed: (config["conv_template"].isstd::string()) is false:
Stack trace:
File "/Users/kartik/mlc/mlc-llm/cpp/llm_chat.cc", line 540

at org.apache.tvm.Base.checkCall(Base.java:173)
at org.apache.tvm.Function.invoke(Function.java:130)
at ai.mlc.mlcllm.ChatModule.reload(ChatModule.java:46)
at ai.mlc.mlcchat.AppViewModel$ChatState$mainReloadChat$1$2.invoke(AppViewModel.kt:648)
at ai.mlc.mlcchat.AppViewModel$ChatState$mainReloadChat$1$2.invoke(AppViewModel.kt:646)
at ai.mlc.mlcchat.AppViewModel$ChatState.callBackend(AppViewModel.kt:548)
at ai.mlc.mlcchat.AppViewModel$ChatState.mainReloadChat$lambda$3(AppViewModel.kt:646)
at ai.mlc.mlcchat.AppViewModel$ChatState.$r8$lambda$CXL6v4mjTu_Sr5Pk2zFDcus0R-8(Unknown Source:0)
at ai.mlc.mlcchat.AppViewModel$ChatState$$ExternalSyntheticLambda2.run(Unknown Source:8)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:524)
at java.util.concurrent.FutureTask.run(FutureTask.java:317)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1156)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:651)
at java.lang.Thread.run(Thread.java:1119)

Error message:
InternalError: Check failed: (config["conv_template"].isstd::string()) is false:
Stack trace:
File "/Users/kartik/mlc/mlc-llm/cpp/llm_chat.cc", line 540

Environment

  • Platform (e.g. WebGPU/Vulkan/IOS/Android/CUDA): Android 15
  • Operating system (e.g. Ubuntu/Windows/MacOS/...):
  • Device (e.g. iPhone 12 Pro, PC+RTX 3090, ...) Xiaoimi Note 13 pro+
  • How you installed MLC-LLM (conda, source):
  • How you installed TVM (pip, source):
  • Python version (e.g. 3.10):
  • GPU driver version (if applicable):
  • CUDA/cuDNN version (if applicable):
  • TVM Hash Tag (python -c "import tvm; print('\n'.join(f'{k}: {v}' for k, v in tvm.support.libinfo().items()))", applicable if you compile models):
  • Any other relevant information:

Additional context

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugConfirmed bugs

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions