-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Open
Labels
bugConfirmed bugsConfirmed bugs
Description
🐛 Bug
To Reproduce
Steps to reproduce the behavior:
1.Load LLama model
1.
1.
Expected behavior
response
MLCChat failed
Stack trace:
org.apache.tvm.Base$TVMError: InternalError: Check failed: (config["conv_template"].isstd::string()) is false:
Stack trace:
File "/Users/kartik/mlc/mlc-llm/cpp/llm_chat.cc", line 540
at org.apache.tvm.Base.checkCall(Base.java:173)
at org.apache.tvm.Function.invoke(Function.java:130)
at ai.mlc.mlcllm.ChatModule.reload(ChatModule.java:46)
at ai.mlc.mlcchat.AppViewModel$ChatState$mainReloadChat$1$2.invoke(AppViewModel.kt:648)
at ai.mlc.mlcchat.AppViewModel$ChatState$mainReloadChat$1$2.invoke(AppViewModel.kt:646)
at ai.mlc.mlcchat.AppViewModel$ChatState.callBackend(AppViewModel.kt:548)
at ai.mlc.mlcchat.AppViewModel$ChatState.mainReloadChat$lambda$3(AppViewModel.kt:646)
at ai.mlc.mlcchat.AppViewModel$ChatState.$r8$lambda$CXL6v4mjTu_Sr5Pk2zFDcus0R-8(Unknown Source:0)
at ai.mlc.mlcchat.AppViewModel$ChatState$$ExternalSyntheticLambda2.run(Unknown Source:8)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:524)
at java.util.concurrent.FutureTask.run(FutureTask.java:317)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1156)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:651)
at java.lang.Thread.run(Thread.java:1119)
Error message:
InternalError: Check failed: (config["conv_template"].isstd::string()) is false:
Stack trace:
File "/Users/kartik/mlc/mlc-llm/cpp/llm_chat.cc", line 540
Environment
- Platform (e.g. WebGPU/Vulkan/IOS/Android/CUDA): Android 15
- Operating system (e.g. Ubuntu/Windows/MacOS/...):
- Device (e.g. iPhone 12 Pro, PC+RTX 3090, ...) Xiaoimi Note 13 pro+
- How you installed MLC-LLM (
conda, source): - How you installed TVM (
pip, source): - Python version (e.g. 3.10):
- GPU driver version (if applicable):
- CUDA/cuDNN version (if applicable):
- TVM Hash Tag (
python -c "import tvm; print('\n'.join(f'{k}: {v}' for k, v in tvm.support.libinfo().items()))", applicable if you compile models): - Any other relevant information:
Additional context
Metadata
Metadata
Assignees
Labels
bugConfirmed bugsConfirmed bugs