Skip to content

Commit c5b3722

Browse files
authored
gh-138122: Improve the profiling section in the 3.15 what's new document (#140156)
1 parent edff5aa commit c5b3722

File tree

1 file changed

+78
-95
lines changed

1 file changed

+78
-95
lines changed

Doc/whatsnew/3.15.rst

Lines changed: 78 additions & 95 deletions
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ Summary -- Release highlights
6666
.. PEP-sized items next.
6767
6868
* :pep:`799`: :ref:`A dedicated profiling package for organizing Python
69-
profiling tools <whatsnew315-sampling-profiler>`
69+
profiling tools <whatsnew315-profiling-package>`
7070
* :pep:`686`: :ref:`Python now uses UTF-8 as the default encoding
7171
<whatsnew315-utf8-default>`
7272
* :pep:`782`: :ref:`A new PyBytesWriter C API to create a Python bytes object
@@ -77,12 +77,32 @@ Summary -- Release highlights
7777
New features
7878
============
7979

80+
.. _whatsnew315-profiling-package:
81+
82+
:pep:`799`: A dedicated profiling package
83+
-----------------------------------------
84+
85+
A new :mod:`!profiling` module has been added to organize Python's built-in
86+
profiling tools under a single, coherent namespace. This module contains:
87+
88+
* :mod:`!profiling.tracing`: deterministic function-call tracing (relocated from
89+
:mod:`cProfile`).
90+
* :mod:`!profiling.sampling`: a new statistical sampling profiler (named Tachyon).
91+
92+
The :mod:`cProfile` module remains as an alias for backwards compatibility.
93+
The :mod:`profile` module is deprecated and will be removed in Python 3.17.
94+
95+
.. seealso:: :pep:`799` for further details.
96+
97+
(Contributed by Pablo Galindo and László Kiss Kollár in :gh:`138122`.)
98+
99+
80100
.. _whatsnew315-sampling-profiler:
81101

82-
:pep:`799`: High frequency statistical sampling profiler
83-
--------------------------------------------------------
102+
Tachyon: High frequency statistical sampling profiler
103+
-----------------------------------------------------
84104

85-
A new statistical sampling profiler has been added to the new :mod:`!profiling` module as
105+
A new statistical sampling profiler (Tachyon) has been added as
86106
:mod:`!profiling.sampling`. This profiler enables low-overhead performance analysis of
87107
running Python processes without requiring code modification or process restart.
88108

@@ -91,101 +111,64 @@ every function call, the sampling profiler periodically captures stack traces fr
91111
running processes. This approach provides virtually zero overhead while achieving
92112
sampling rates of **up to 1,000,000 Hz**, making it the fastest sampling profiler
93113
available for Python (at the time of its contribution) and ideal for debugging
94-
performance issues in production environments.
114+
performance issues in production environments. This capability is particularly
115+
valuable for debugging performance issues in production systems where traditional
116+
profiling approaches would be too intrusive.
95117

96118
Key features include:
97119

98120
* **Zero-overhead profiling**: Attach to any running Python process without
99-
affecting its performance
100-
* **No code modification required**: Profile existing applications without restart
101-
* **Real-time statistics**: Monitor sampling quality during data collection
102-
* **Multiple output formats**: Generate both detailed statistics and flamegraph data
103-
* **Thread-aware profiling**: Option to profile all threads or just the main thread
104-
105-
Profile process 1234 for 10 seconds with default settings:
106-
107-
.. code-block:: shell
108-
109-
python -m profiling.sampling 1234
110-
111-
Profile with custom interval and duration, save to file:
112-
113-
.. code-block:: shell
114-
115-
python -m profiling.sampling -i 50 -d 30 -o profile.stats 1234
116-
117-
Generate collapsed stacks for flamegraph:
118-
119-
.. code-block:: shell
120-
121-
python -m profiling.sampling --collapsed 1234
122-
123-
Profile all threads and sort by total time:
124-
125-
.. code-block:: shell
126-
127-
python -m profiling.sampling -a --sort-tottime 1234
128-
129-
The profiler generates statistical estimates of where time is spent:
130-
131-
.. code-block:: text
132-
133-
Real-time sampling stats: Mean: 100261.5Hz (9.97µs) Min: 86333.4Hz (11.58µs) Max: 118807.2Hz (8.42µs) Samples: 400001
134-
Captured 498841 samples in 5.00 seconds
135-
Sample rate: 99768.04 samples/sec
136-
Error rate: 0.72%
137-
Profile Stats:
138-
nsamples sample% tottime (s) cumul% cumtime (s) filename:lineno(function)
139-
43/418858 0.0 0.000 87.9 4.189 case.py:667(TestCase.run)
140-
3293/418812 0.7 0.033 87.9 4.188 case.py:613(TestCase._callTestMethod)
141-
158562/158562 33.3 1.586 33.3 1.586 test_compile.py:725(TestSpecifics.test_compiler_recursion_limit.<locals>.check_limit)
142-
129553/129553 27.2 1.296 27.2 1.296 ast.py:46(parse)
143-
0/128129 0.0 0.000 26.9 1.281 test_ast.py:884(AST_Tests.test_ast_recursion_limit.<locals>.check_limit)
144-
7/67446 0.0 0.000 14.2 0.674 test_compile.py:729(TestSpecifics.test_compiler_recursion_limit)
145-
6/60380 0.0 0.000 12.7 0.604 test_ast.py:888(AST_Tests.test_ast_recursion_limit)
146-
3/50020 0.0 0.000 10.5 0.500 test_compile.py:727(TestSpecifics.test_compiler_recursion_limit)
147-
1/38011 0.0 0.000 8.0 0.380 test_ast.py:886(AST_Tests.test_ast_recursion_limit)
148-
1/25076 0.0 0.000 5.3 0.251 test_compile.py:728(TestSpecifics.test_compiler_recursion_limit)
149-
22361/22362 4.7 0.224 4.7 0.224 test_compile.py:1368(TestSpecifics.test_big_dict_literal)
150-
4/18008 0.0 0.000 3.8 0.180 test_ast.py:889(AST_Tests.test_ast_recursion_limit)
151-
11/17696 0.0 0.000 3.7 0.177 subprocess.py:1038(Popen.__init__)
152-
16968/16968 3.6 0.170 3.6 0.170 subprocess.py:1900(Popen._execute_child)
153-
2/16941 0.0 0.000 3.6 0.169 test_compile.py:730(TestSpecifics.test_compiler_recursion_limit)
154-
155-
Legend:
156-
nsamples: Direct/Cumulative samples (direct executing / on call stack)
157-
sample%: Percentage of total samples this function was directly executing
158-
tottime: Estimated total time spent directly in this function
159-
cumul%: Percentage of total samples when this function was on the call stack
160-
cumtime: Estimated cumulative time (including time in called functions)
161-
filename:lineno(function): Function location and name
162-
163-
Summary of Interesting Functions:
164-
165-
Functions with Highest Direct/Cumulative Ratio (Hot Spots):
166-
1.000 direct/cumulative ratio, 33.3% direct samples: test_compile.py:(TestSpecifics.test_compiler_recursion_limit.<locals>.check_limit)
167-
1.000 direct/cumulative ratio, 27.2% direct samples: ast.py:(parse)
168-
1.000 direct/cumulative ratio, 3.6% direct samples: subprocess.py:(Popen._execute_child)
169-
170-
Functions with Highest Call Frequency (Indirect Calls):
171-
418815 indirect calls, 87.9% total stack presence: case.py:(TestCase.run)
172-
415519 indirect calls, 87.9% total stack presence: case.py:(TestCase._callTestMethod)
173-
159470 indirect calls, 33.5% total stack presence: test_compile.py:(TestSpecifics.test_compiler_recursion_limit)
174-
175-
Functions with Highest Call Magnification (Cumulative/Direct):
176-
12267.9x call magnification, 159470 indirect calls from 13 direct: test_compile.py:(TestSpecifics.test_compiler_recursion_limit)
177-
10581.7x call magnification, 116388 indirect calls from 11 direct: test_ast.py:(AST_Tests.test_ast_recursion_limit)
178-
9740.9x call magnification, 418815 indirect calls from 43 direct: case.py:(TestCase.run)
179-
180-
The profiler automatically identifies performance bottlenecks through statistical
181-
analysis, highlighting functions with high CPU usage and call frequency patterns.
182-
183-
This capability is particularly valuable for debugging performance issues in
184-
production systems where traditional profiling approaches would be too intrusive.
185-
186-
.. seealso:: :pep:`799` for further details.
187-
188-
(Contributed by Pablo Galindo and László Kiss Kollár in :gh:`135953`.)
121+
affecting its performance. Ideal for production debugging where you can't afford
122+
to restart or slow down your application.
123+
124+
* **No code modification required**: Profile existing applications without restart.
125+
Simply point the profiler at a running process by PID and start collecting data.
126+
127+
* **Flexible target modes**:
128+
129+
* Profile running processes by PID (``attach``) - attach to already-running applications
130+
* Run and profile scripts directly (``run``) - profile from the very start of execution
131+
* Execute and profile modules (``run -m``) - profile packages run as ``python -m module``
132+
133+
* **Multiple profiling modes**: Choose what to measure based on your performance investigation:
134+
135+
* **Wall-clock time** (``--mode wall``, default): Measures real elapsed time including I/O,
136+
network waits, and blocking operations. Use this to understand where your program spends
137+
calendar time, including when waiting for external resources.
138+
* **CPU time** (``--mode cpu``): Measures only active CPU execution time, excluding I/O waits
139+
and blocking. Use this to identify CPU-bound bottlenecks and optimize computational work.
140+
* **GIL-holding time** (``--mode gil``): Measures time spent holding Python's Global Interpreter
141+
Lock. Use this to identify which threads dominate GIL usage in multi-threaded applications.
142+
143+
* **Thread-aware profiling**: Option to profile all threads (``-a``) or just the main thread,
144+
essential for understanding multi-threaded application behavior.
145+
146+
* **Multiple output formats**: Choose the visualization that best fits your workflow:
147+
148+
* ``--pstats``: Detailed tabular statistics compatible with :mod:`pstats`. Shows function-level
149+
timing with direct and cumulative samples. Best for detailed analysis and integration with
150+
existing Python profiling tools.
151+
* ``--collapsed``: Generates collapsed stack traces (one line per stack). This format is
152+
specifically designed for creating flamegraphs with external tools like Brendan Gregg's
153+
FlameGraph scripts or speedscope.
154+
* ``--flamegraph``: Generates a self-contained interactive HTML flamegraph using D3.js.
155+
Opens directly in your browser for immediate visual analysis. Flamegraphs show the call
156+
hierarchy where width represents time spent, making it easy to spot bottlenecks at a glance.
157+
* ``--gecko``: Generates Gecko Profiler format compatible with Firefox Profiler
158+
(https://profiler.firefox.com). Upload the output to Firefox Profiler for advanced
159+
timeline-based analysis with features like stack charts, markers, and network activity.
160+
* ``--heatmap``: Generates an interactive HTML heatmap visualization with line-level sample
161+
counts. Creates a directory with per-file heatmaps showing exactly where time is spent
162+
at the source code level.
163+
164+
* **Live interactive mode**: Real-time TUI profiler with a top-like interface (``--live``).
165+
Monitor performance as your application runs with interactive sorting and filtering.
166+
167+
* **Async-aware profiling**: Profile async/await code with task-based stack reconstruction
168+
(``--async-aware``). See which coroutines are consuming time, with options to show only
169+
running tasks or all tasks including those waiting.
170+
171+
(Contributed by Pablo Galindo and László Kiss Kollár in :gh:`135953` and :gh:`138122`.)
189172

190173

191174
.. _whatsnew315-improved-error-messages:

0 commit comments

Comments
 (0)