-
Notifications
You must be signed in to change notification settings - Fork 54
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of commands above
==============================
System Info
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0
Clang version : Could not collect
CMake version : version 4.1.2
Libc version : glibc-2.35
==============================
PyTorch Info
PyTorch version : 2.8.0+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
Python version : 3.12.12 (main, Oct 10 2025, 08:52:57) [GCC 11.4.0] (64-bit runtime)
Python platform : Linux-6.8.0-1015-gcp-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
Is CUDA available : False
CUDA runtime version : No CUDA
CUDA_MODULE_LOADING set to : N/A
GPU models and configuration : No CUDA
Nvidia driver version : No CUDA
cuDNN version : No CUDA
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 180
On-line CPU(s) list: 0-179
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9B14
CPU family: 25
Model: 17
Thread(s) per core: 1
Core(s) per socket: 90
Socket(s): 2
Stepping: 1
BogoMIPS: 5199.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr wbnoinvd arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 5.6 MiB (180 instances)
L1i cache: 5.6 MiB (180 instances)
L2 cache: 180 MiB (180 instances)
L3 cache: 768 MiB (24 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-89
NUMA node1 CPU(s): 90-179
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; Safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvshmem-cu12==3.3.20
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0
[pip3] torch_xla==2.8.0
[pip3] torchax==0.0.7
[pip3] torchvision==0.23.0
[pip3] transformers==4.57.1
[pip3] triton==3.4.0
[conda] Could not collect
==============================
vLLM Info
ROCM Version : Could not collect
vLLM Version : 0.11.1rc7.dev134+g5d6ce2b96 (git sha: 5d6ce2b96)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
Could not collect
==============================
Environment Variables
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
jax: 0.8.0
jaxlib: 0.8.0
numpy: 2.2.6
python: 3.12.12 (main, Oct 10 2025, 08:52:57) [GCC 11.4.0]
device info: TPU v6 lite-8, 8 local devices"
process_count: 1
platform: uname_result(system='Linux', node='t1v-n-de2d9e56-w-0', release='6.8.0-1015-gcp', version='https://github.com/vllm-project/tpu-inference/pull/17~22.04.1-Ubuntu SMP Tue Sep 3 16:11:52 UTC 2024', machine='x86_64')
🐛 Describe the bug
Is qwen3-480b supported? We tried qwen3-480b on v7 and from tracing, it still go through dense implementation in qwen3.py? The tensor shape for the allreduce doesn't seem correct which caused very large latency?
Before submitting a new issue...
- Make sure you already searched for relevant issues and checked the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working