Features
ChromaDB Integrations
You can use Agently ChromaDB Integrations to simplify the use case of ChromaDB
from agently import Agently
from agently.integrations.chromadb import ChromaData, ChromaEmbeddingFunction
from chromadb import Client as ChromaDBClient
embedding = Agently.create_agent()
embedding.set_settings(
"OpenAICompatible",
{
"model": "qwen3-embedding:0.6b",
"base_url": "http://127.0.0.1:11434/v1/",
"auth": "nothing",
"model_type": "embeddings",
},
).set_settings("debug", False)
embedding_function = ChromaEmbeddingFunction(agent=embedding)
chroma_data = ChromaData(
[
{
"document": "Book about Dogs",
"metadata": {"book_name": "🐶"},
},
{
"document": "Book about cars",
"metadata": {"book_name": "🚗"},
},
{
"document": "Book about vehicles",
"metadata": {"book_name": "🚘"},
},
{
"document": "Book about birds",
"metadata": {"book_name": "🐦⬛"},
},
],
)
chromadb = ChromaDBClient()
collection = chromadb.create_collection(
name="test",
get_or_create=True,
metadata={
"hnsw:space": "cosine",
},
configuration={
"embedding_function": embedding_function,
},
)
collection.add(**chroma_data.get_kwargs())
print("[ADD]:\n", chroma_data.get_original_data())
result = collection.query(query_texts=["Book about traffic"])
print(result)Updates
TriggerFlow
.when()support 'and', 'or' and 'simple_or' mode. [Example Code]- Developers can use
.save_blue_print()to export blue print data from trigger flow instance or from blue print instance and use.load_blue_print()to import blue print data into other trigger flow instance or blue print instance. [Example Code]
Agent Request
Better Prompt DX
- [Prompt]: New prompt slots
optionsto allow developers to customize single request / agent request options. - [Prompt]: New prompt slots
examplesto help developers provide one-shot / few-shots examples. - [Prompt]: Update
agent.promptto allow developers export prompt text or messages only. [Example Code] - [Prompt]: New settings
prompt.prompt_title_mappingto help developers to customize title of different prompt slots. [Example Code]
Configure Prompt Update
- [Configure Prompt]: Support the expression of Agently output format. [Example Code]
Request Settings Updates to Support Local Deployed Model Service
- [Request Settings]: Support customized authorization headers [Example Code]
- [Request Settings]: Developers can use
full_urlto provide full model request URL in case that sometimes the model URL does not follow the rule of OpenAI base URL. - [Request Settings]: Developers can use
api_keyin request settings now, it works all the same asauth.
Agent Response
- [Instant Mode]: StreamingData add attribute
full_datawhich contains current completed streaming data. - [Result]: Former
.get_result()method is renamed as.get_data()which will return parsed data. New.get_result()method will returnAgentlyResponseResultinstance which contains more attributes to help developers to collect information of result. - [Response Generator Type]: New response generator type
typed_delta(and now.get_generator()and.get_async_generator()will use argumenttypeinstead of argumentcontent). - [Response Event]: Add new response event
tool_callswhich can be consumed in generator typetyped_deltaandinstant/streaming_parse. [Example Code]
Plugins
- [Agent Extension Core]: Update extension handler slots to
request_prefixes,broadcast_prefixes,broadcast_suffixesandfinally - [Tools]: Built-in tool Search new support argument
optionsto customize more options configures. [Example Code]
Utils
- [FunctionShifter]: New decorator
@auto_options_functo help developers to create a function that will ignore undefined key arguments that passed by caller (useful when model try to pass undefined arguments to a tool function).